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Abstract

The kinetics of charge separation due to the outer-sphere electron transfer processes in triad systems D=A<A in a polar environment were
investigated using the stochastic Liouville equations. The solvation phenomena of the triad system in the different electronic states were
described using Green's functions in two mutually correlated reaction coordinates and their auto- and cress-correlation functions. The coupling
between the sequential and superexchange processes in the triad system was investigated.
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1. Introduction

In recent years, much effort has been made to model the
electron transfer processes in triad systems related to photo-
synthetic reaction centres [1-10]. In the photosynthetic
reaction centre of Rhodopseudomonas viridis, the bacterio-
chlorophyll special pair donor (P) is initially excited. An
electron is transferred from P* to a distant bacteriopheophytin
(H,). These two subunits are bridged by bacteriochlorophyll
monomer (B, ), which can function as areal electron acceptor
or can contribute to effective electronic coupling between the
special pair dimer (P*) and bacteriopheophytin (H.). The
importance of the relative contributions of the sequential,
two-step charge separation and the direct process due to
superexchange has been the subject of many theoretical con-
siderations and experimental research [1-4,8].

Hu and Mukamel [6,7] developed a unified theory of
electron transfer in the triad system using the density matrix
method. The approach exploits an analogy between the elec-
tron transfer processes in multicentre donor-acceptor systems
and non-linear optical processes and the underlying dynamics
contributing to the optical lineshapes [11-.7]. In particular,
the electron transfer processes in the triad system are analo-
gous to optical pump-probe experiments. They solved the
Liouville equation for the density matrix using the perturba-
tional expansion in the powers of the coupling constants Vj,
and the Liouville space Green’s functions to describe the
system dynamics. The dynamics are described in terms of the
coordinate auto-correlation functions and corresponding
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cross-correlation functions. They did not invoke directly two-
dimensional potential energy surfaces for the triad system. In
this paper, we show that using the concept of a two-dimen-
sional energy surface, we can recover the formal results of
the Hu and Mukamel theory [6,7] in a form convenient for
analysis of the couplings between different processes. The
role of the correlation between two solvent polarization coor-
dinates can be evaluated easily in the present approach.

An important question for the evaluation of the electron
transfer rates is the correlation between the fluctuations in the
two energy gaps between the three electronic states. The
energy gaps are an obvious choice for the reaction coordinates
[3,6,10,18,19]. Their fluctuations are due to intramolecular
nuclear motions and outer-sphere solvent nuclear motions,
The changes in the energy level separations due to solvent
fluctuations can be accounted for by the difference between
the electrostatic interactions of the solvent molecules with
the donor and acceptor subunits of the supramolecular system
[1,3,18]. The correlation of the solvent polarization coordi-
nates is a simple consequence of the fact that each polar
molecule contributes simultancously to all electrostatic
energy differences in the triad system. Recently, using the
variational method, the potential energy functions in the two
solvent polarization coordinates have been derived within the
framework of the dielectric continuum approairiation
[10,18,19]. The correlation between the two solvent polari-
zation coordinates can be simply related to the geometrical
arrangement of the subunits forming the triad system, The
coordinate correlation coefficient can also be given in terms
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of the three reorganization energies characterizing the three
elzctron transfer processes in the triad system [19].

Tang et al. [20-23] have applied the stochastic Liouville
equations to solve the problem of electron transfer between
three clectronic states using a single solvent polarization
coordinate, extending the original Zusman theory of outer-
sphere electron transfer in the two-level system. Recently,
Tang and Norris [9] applied the Liouville equation approach
to the triad system using two non-correlated solvent polari-
zation coordinates. However, the potential energy functions
applicd in Ref. [9] are not consistent with linear response
theory. The horizontal displacements of the potential energy
surfaces and the harmonic force constants are considered as
independent quantities. This results in the rotation of the
directions of the surface intersections introducing additional
couplings. More direct effects resulting from the dependence
of the p.otential energy functions on the coordinate correlation
are missing in their approach. Within the framework of the
linear response theory, the reorganization energies simulta-
neously determine the shape of the potential energy surfaces
and their horizontal displacements. The corresponding rela-
tions were recently discussed in Refs. [24] and [25) for the
single reaction coordinate and in Refs. [10], [18] and [19]
for the triad system. It has been shown that there are three
possibilities of selection of the two solvent polarization coor-
dinates for the triad system.

The two solvent polarization coordinates and their corre-
lation have been qualitatively considered in several papers
{5.9,26). The most precise information concerning the sol-
vation thermodynamics as well as the solvation dynamics is
obtained from molecular dynamics simulations. Extensive
molecular dynamics simulations for the photosynthetic reac-
tion centre of Rhodopseudomonas viridis have been per-
formed by Marchi and coworkers [3,4]. In Ref. (3], aspecial
choice of solvatior. coordinates has been used (linear com-
bination of the energy level differences) so that the two coor-
dinates are orthogonal at # = 0. Their calculations have shown
that the reaction coordinates are approximately orthogonal in
all the time domain. The simulations by Marchi et al. [3)
show a high degree of coordinate correlation. The correlation
coefficients derived from the results obtained by Marchi et
al. [3) are independent of the rescaling applied for the reor-
ganization energies.

The purpose of this paper is to analyse the non-adiabatic
clectron transfer processes in the triad system using the poten-
tial energy functionsin the two correlated solvent polarization
coordinates. The dynamics of the system are described using
the stochastic Liouville equation. The solvation dynamics are
described in terms of Green's functions which depend on the
auto- and cross-correlation functions of the solvent polari-
zation coordinates.

2. Solvation dynamics in the two-dimensional case

The influence of solvent polarization on the electron trans-
fer processes in the triad system can be described in terms of

two reaction coordinates. Each coordinate is related to the
electrostatic energy difference for the interaction between the
polar solvent molecules and the two subunits involved in the
electron transfer step under consideration. For the A-B-C
triad, we select the central subunit B as the subunit common
to the two solvent polarization coordinates. We should men-
tion that m some applications the subunit A is taken as ref-
erence for the two solvent polarization coordinates.

The diabatic energy surface in the solvation coordinates
for the initial neutral state is given by [18)

1 (4 _ 2094 51._)
Ua(‘ln‘lz) 2(1 -pa) (24\1 V4l\|/\2 * 2A

where p=A,5/(A;A;)""? is the coordinate correlation coef-
ficient, A, and A, are the solvent reorganization energies for
electron transfer along ¢, and ¢, coordinaes and A, is a
measure of the coordinate correlation. The reorganization
energies measure the standard deviations of the reaction
coordinates. The standard deviations are given by
A =(89:(0)8,(0)),, A= (89:(0)895(0)),, and
A;*=(8q,(0)84,(0)),, measures the equilibrium correla-
tion of the reaction coordinates. The following relations hold:
A |2 21\1,{9?" A;a = ZAngT and A 122 =2 2A|2kn7‘.

Within the framework of the linear response theory, the
potential energy surfaces for the charge transfer (CT) states
D*-A;"-Aand D*-A,-A," are given by [18,24,25]

(n

Ux(9142) = Ui(q1g2) =1 + A+ AG,, (2)
and
Us(9192) =Uy(91.92) —q1 + 42+ A3+ AG, 3)

respectively. The combined reorganization energy for the 1
to 3 transition is given by Ay = A, + A, = 2A,,. The minimum
of the surface Uy(4,,4,) islocated at ¢, = 24, 'V =2A,;
the minimum of the surface Uy(qy,q2) isatq,'> =24, — 24,2,
2"V = =203+ 2. The contour maps of the potential
energy surfaces 1-3 are shown in Fig. 1.

The distribution function of the solvent polarization coor-
dinates at equilibrium is given by

1
°q1q2) =
NPT SN ape

- (2 _, a4 qf)]
x“"[ 2(1-p%) (A.z *aa, oy @
where p= A |22,[A |A2] .

The solvation dynamics can be described in terms of
Green's function ¢(g:.92119,".2,°) representing the condi-
tional probability that the solvation coordinates have expec-
tation values g,,g, at time ¢ given that they had the values
0,°.." at time 0 if the system is in the single electronic state.
The derivation of the equation for Green’s function using
cumulant expansion to the second order is presented else-
where [27]. The dynamic correlations are described using
the following matrix
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Fig. 1. Potential energy contour maps (A U;= 0.2 eV) for the lowest o1 lergy
surfaces. A Gya= —0.075 eV, AGjy= =015 eV, A, =0. 1432 ¢V,
A3=0.1272 eV, Ay=0.1567 eV. The rcorganization energies were derived
from the molecular dynamics simulations for the photosynthetic reaction
centre by Marchi et al. [3).

A2 A? APM(1)  APMy(0)
S(1) = At A;? APMa(0)  AM(D)
AMI(D  AM(n A2 Ay}
DM () APM () A A}
(5)

The matrix S(¢) is a symmetric matrix of the auto-correlation
and cross-correlation functions and the corresponding
standard deviations. The auto-correlation functions are
defined as M, (1) =(89,(1)89,(0))o/A? My(1)=
{892(1)892(0) ¥,,/ A% The cross-correlation funcuon is nor-
malized as follows M,,(t) = (Gq,(t) 82,(0) )an/A 122

Green's function ¢(4,,92,1]4'1,¢'>) for the neutral state of
the triad systen: has the following form

DXy, X358 XaiX4) = —_—
12y Liad) 2 ,"‘| S—(-—t_) l"
l 2 -1 cq
Xexp - "prs'[k (t)xk /¢ (Xg,x4) (6)
2 Lk

The matrix clements of the inverse matrix S ~'(r) are calcu-
lated using the standard procedure

S~ () =(=1)"¥ST(N] /S0 | (7
where |ST(#),| is the determinant of the minor HOM
obtained from the transposed S(f) matrix by removing the

Ith row and kth column. The determinant |S(¢) | of the matrix
S(1) is equal to

IS =4"A%[1-M2(1)]
X[1=M3(0)]+p*[1-M2 (D)3
=2p2[[1+M,(DMy(D) ] [1+M,2%(1) )
=2M (D) [My (1) +M3) 11} (8)

At long times, Green’s function reaches the equilibrium
distribution in a particular state &(q;.g2¢]9:%g.°) =
¢“(q1.92).

Both the experimental data and theoretical predictions, e.g.
the results of molecular dynamics simulations, show that the
auto-correlation functions M;(¢) are non-exponential func-
tions of time [3,4,14,28-31]. At very short times, the inertial
cffects determine the time dependence of the auto-correlation
function. In the general case, the dynamics of the system can
be characterized using suitably chosen auto- and cross-cor-
relation functions of system variables. These functions can
be calculated using, for example, the methods of molecular
dynamics. The simulations performed by Marchi et al. (3]
for the triad systein composed of the special pair, bacterioch-
lorophyll and bacteriopheophytin in the bacterial photosyn-
thetic reaction centre of Rhodopseudomonas viridis showed
that the fluctuations in the two energy gaps are correlated.

Within the framework of the linear response theory,
Green'’s functions for different electronic states are given by
[18,24]

‘l’m(ql)qu'qloquo)
=d(q1 =0 g2~ 0" 119, -9, q

where ¢,™, g™ specify the position of the minimum of the
surface m. The Green's functions given by Eqgs. (6) and (9)
describe the dynamics on each svrface in the absence of
electron transfer processes. They are considered as the solu-
tions of the equations of the following general type [32,33]

2= (9)

a al
5; "’m(qhqm’) = rmmD(ql!qmt) ° ‘f’m(thzJ) ( ]0)

for the initial distribution @,(q1,g20) = 8(g,— ;")
8(g2—¢q,"). The form of the integro-differential operator
I,,Pe is considered to be quite general. In the Laplace
domain we have

5Pn(192:519:°.42°) = $(41,92.0)
= L[ rmmD(qlquvt) ° ¢m(ql’q2"|qlovq20) ] ( 1 l )

where L[...] denotes the Laplace transformation.
The Laplace transforms of Green’s functions can also be
given by [32-35]

= 4)ncq(ql qu)
s

+ 4,”“1(0'0) 7-".n(qlvq'bslqlo’qzo) ( 123)

J’n(‘]l’qbs I 1 loquo)
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70(9192:519:°42°)
-1 I[«b (91:92119:°42") = $."(41,92) ]
" 3(0,0) A e

Xexp(—st) dt (12b)
where 7(41,92,5| 4,°.4:°) represents the solvent relaxation
time scale functions. In Green’s function (12a), the first term
describes the equilibrium contribution, whereas the second is
due to the finite rate of the solvation dynamics in the given
electronic state.

3. Stochastic Liouville equations for the triad system

The stochastic Liouville equation for the density matrix of
the three-level system (which includes the solvation dynam-
ics in the supramolecular three-component system in a polar
solvent) has the following form [6,9]

9 i
% p(q1qat) = — 2 [H(q1,92)p(q192:1) ]

3
+ 'a';p(QhQZ’t”m (13)

where the system hamiltonian is given by

Ui(g193) Vi2 Via
H(qnq21) =| Vy2 Ux(q1q2) Va (14)
Vis Vay Us(q142)

Here V,,, are the electronic coupling matrix elements between
the diabatic potential energy surfaces U,(q,.q:) and
Usq1g2). We use the following notation U,,=
Un(91,¢2) = Up(q1,q2) for the vertical energy differences.
The following relation holds: U3+ Upy = U,

The relaxation term in Eq. (13) accounts for the solvation
dynamics on three surfaces (diagonal terms) and phenome-
nologically the dephasing for the off-diagonal clements of
the density matrix (as in optical Bloch equations) [§]

3 rub"ﬂu =Nap2 —Nypiy
aftp(%%‘)lm‘ ~Dapn D®opnn =Dypy (15,
=D —Tapp yPopy

The form of the hawiltonian and the relaxation term imply
that, in the present formulation, we can model both the static
limit of the solvent fluctuations considered by Hu and Muka-
mel [6,7] and to some extent the dephasing of electronic
coherence. We assume that I, = I',,,. The relaxation of the
diagonal elements of the density matrix (populations), i.e.
the solvation dynamics, is described by Eqs. (6) and (9).
The matrix elements of the density in the frequency domain
satisfy the following equations

P = Prm(0) = — ;‘,; (H,5]mn

+L[3pmu/ 0| gt], mn=1,2,3 (16)

In an explicit form the Liouville equation represents nine
equations for the Laplace transforms of the elements of the
density matrix.

Using the solutions for the off-diagonal matrix elements,
the kinetic equations for the populations of the three levels
in the Laplace domain can be written in terms of the three
rate functions [ 34-36)

sPu(qugas) = pu(0)
= = Fi(q1425) = F2(91,g28) + [P, 41.92:5) (17a)
$Pra(Gudas) = + Fi(g1.428) = Fr(91,42:5)

v I®paa(1.428) (17b)
5P q1g2,8) = + Fa(gqas) + Fa(qrga.)
+ NaPpu(q1g2.s) (17¢)

The rate functions have been defined as follows

Fi(q1.928) = K1(01.925) [511(91.92.5) = 2 q1.q2.8) ) (18a)
Fy(1,925) = K3(1,928) 511 (91,428) = Pra(q1.925) | (18b)
Fy(01.929) = Ky(91.928) [ 722(91.425) = Pra(@rq28)]  (18¢)

where the functions K;(¢,,q2,5) play the role of the effective
coupling between the donor and acceptor sites. Detailed equa-
tions for the coupling functions will be given elsewhere (see
also Appendix A). Below, we consider specific examples and
approximations for K(¢,.gz.5). In the general case, the effec-
tive coupling function contains contributions due to the direct
coupling of the two states and due to superexchange. The
furctions K)(q,,g2,5) have large values along the intersec-
tions of the potentia! energy functions.

The solutions of the kinetic equations for the populations
of the levels in the Laplace domain in terms of the gaussian
wavepackets are as follows [32,36]

Mm(qng2s) = iju(mo"ho.o) ¢1(91,92519:°.9.")dq,%dg,°

- IJ‘F 1(9:°.02°.5) D1(1.92,519,°)dg,°dg,°
(19a)
- I IF 201°.9:°5) $,(41.92.519.°.9,°) d¢,°dg,°

£22(91.¢28) = + I J' F 1 (‘llov‘ko-s ) ';z(q 19251q 10’920) dqlod‘lzo
- I I Fy(9,°.9:°.5) 6:(41.92:519.°.9,°) dg,°dg,°

(19b)
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p3(q1.q28) = + IIF_' 2(41%92°5) $3(41,42,519,.°.9.°) dg,°dg,°

+ IIF 3(41%42°.5) $3(91,92,5| 9,°.q.") dg,°dg,°
(19¢)

The first term in Eq. (19a) depends on the initial distribution
of the population on surface 1. For photoinduced electron
transfer processes this distribution is established by the pho-
toexcitation mode. Transient hole burning experiments show
that this distribution can be controlled by the properties of
the laser pulses. Here, for simplicity, we assume that the initial
distribution on surface 1 is the equilibrium gaussian distri-
bution. For the initial equilibrium distribution
p11(9:%42".0) = $,°(,°4."), we have

fﬂnm(q:"-q:".())«l'n(q..th.sIq:".ch")dm"dqz"

= " (qug2) /s (20)

We note that ¢,*(q,,42) also represents the long time limit
of the gaussian function ¢, (¢,,q2.t]0,"q2").

The totai populations of the three levels in the Laplace
domain can be obtained by integrating the populations
Pmm(Q14q2) Over the solvent polarization coordinates

5mm(s) = ﬁmm(ql'qZ)dqldq2 (21)

Using Egs. (19) and (21), these populations can be
expressed as

- 1 - -

pm(s)= 3 (1=Fy(s) —Fa(s)] (22a)
1 - -

Pan(s) = 3 [Fy(s5) = F3(s)} (22b)
1 - -

paa(s) = 3 [F2(s) + F3(s)) (22¢)

where

Fu(s)= f fﬁ..(q..qz,s)dq.dqz (23)

represents the total rate functions for the transitions in the
three-level system. Using Eqs. (18) defining the rate func-
tions, the formal solutions for the populations of the states
(Eqgs. (19)) and integrating over the coordinate space, we
obtain the integral equations for the total rate functions

A= 180 = A6 () +00s)]

= Fp(5)011(5) + F3(5)Q12(5) )
- UF. (4:°9°) [ T11(9:%92°5)

+Ty,(9,".q.".5) 1dq,°dg,’
- IIF 20:°9:%5) T11(9,°.4,%5)dg,"dg;°

+ I Iﬁ 3(0:°%92°5) T12(9,°,1,°,5)dq,%dgq,"  (24a)

1 - ~ - ~
Fy(s) = £ 1Q21(5)Qu (5) = F2() [ Q21 (5)

+023(5)] = F3(5)Q25(5) }
- II[F 1 (‘110»‘120,3 ) Tzl (410420,8 )dq,%dg,°

- f f Fy(q,°.2:°5) [ T21(9,°.9,°5)

+T53(4:.°.q,°5) 1dg,°dg,°
- J.J‘F 3(0°.92°5) T23(9,°.9,°5) 1dg,%dg,° (24b)

| =
Fy(s) = S {F1(5)@3:(5) = F2(8) @aa(s)

= F3(5) [ @32(5) + 053() )
+ IJF 1(00°,9:°9) Taa(9,°,q2)15) dg,"dg,°

- IIF 2(4,%42°\8) '1-‘33(q.°,q2°.s )dg,°dg,”

- jjﬁ(q:o.on.s) [ 7‘32(410'920-5)

+T33(4:%92°5) 1dg,°dg,° (24c)
where
Oon(5) = [ [ R0 8301021 dard (258)
and
Ton(9:"42"5)

= ¢"¢“I(0’0) Ijknl(QIrq2'S) fn(ql’q2’s l ‘Ilovfho)d%d%

(25b)

The integral terms represent the double overlap of the solvent
time scale functions 7,( ;92,5 | 4:°.¢2°) and the two functions
K.(q1q2s) and Fi(q,°g°s). The three integrals [fff
FI(QIoiqZOoS)[?m(QD qzslfho, q:o) + i"n(qh q:.S|Q|o¢Izo)]
R(41,92,5) dq,°dq,dq; give the measure of the adiabaticity
of the electron transfer at the intersection of the surfaces m
and n. The six integrals [[[[F,(4,%4:%1) 1,925 9:°.42")
R.(91,92,5)44,°,d9,%dq,dg, describe the dynamic coupling of
the electron transfer processes occurring along different inter-
sections, / and k, due to the finite rate of wavepacket propa-
gation on the surface m.

Since the functions K,,(q:,g2s) are defined by explicit
expressions, finding a solution to Eqs. (24) is equivalent to
finding a sclf-consistent population difference between the
reactant and product states. An iterative approach to the solu-
tion of the integral equations can be used. Moreover, Egs.
(24) can also be used as a convenient starung point for
various approximation schemes.

The kinetic description of the electron transfer processes
in the three-level system developed heic can be applied to a
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variety of physical systems. In particular, the non-adiabatic
limit of the electron transfer processes in the triad system
holds when all solvent time scale functions are vanishing
7,(41,42,514,°42°) =0. In this limiting case, all integral terms
containing the functions T,,,(¢,°¢,%s) vanish, and we obtain
a set of algebraic equations for the Laplace transforms of the
rate functions £,(s). Namely, Eqs. (24) simplify as follows

Q-II(S)+Q-12(3) Q:n(s) _ :Q-lz(s)
021(5) +Q2(s)  QOas(s)

Q-zl_(-f) 2 2 )

= Q12(5) QO1(s) Q12(s) + Qs3(s)
1 00 Fj(&') Q:H(S)

+s10 1.0 Fy(s) | =| Qu(s) (26)
0 01 Fy(s) 0

The solution of the coupled equation (Eq. (26)) can be
obtained using standard algebraic methods, ¢.g. by construct-
ing the inverse matrix to the matrix on the left-hand side of
Eq. (26). Eq. (26) reprecents an important resut of the
present formulation of the outer-sphere electron transfer in
the triad system. The superexchange mechanism of clectron
transfer and resonance tunnclling effects in the non-adiabatic
limit can be modelled using these equations.

4. Modelling of the photosynthetic reaction centre

For the photosynthetic reaction centre, the distance
between the donor D and the second acceptor A, is large. The
corresponding electronic coupling matrix element s expected
to be very small V3 50 [2,5,7,8]. The functions &,(q,.qa.5)
for this particular situation are given in Appendix A. We can
distinguish two situations.

(1) When V,, =0, the dominant contribution to the effec-
tive coupling between the states ! and & is due to coupling of
the initial and final states through the intermediate state s # {,
§#k In the case of the superexchange mechanism,
Rx(41,¢2,5) shows a strong dependence on both reaction
coordinates. The function reaches a maximum at the point
common to the three intersection lines. Moreover, along the
direction of the two other intersection lines it attains negative
values. The contour plots of R3(g,,92.5) are shown in Fig, 2
for the dephasing I3, =50 fs~'. This value is used for visu-
alization purposes only. With increasing dephasing rate, the
effective coupling function Ry(1.g2.5) = Vi3Vay$1(41.q5) /
A? decreases and spreads over a large area in the coordinate
space. In Appendix A, a Zusman-type approximation [37]
for the effective coupling function Ky(g,,qx.s) is given. The
matrix elements 0,,(0) and ,,(0) can be evaluated by
numerical methods using Egs. (25) and (A8).

(2) When V, 0, the dominant comwribution is due to
direct coupling between the states  and k. The corresponding
rate functions Ry(,.¢2,5) can be given in the following form
using approximations proposed by Zusman [37]

0.2 1

0.1+

0.2 =

T v Y ¥ T v T v | B
0.2 0.1 0.0 0.1 0.2
&

Fig. 2. Contour map for the eflcctive coupling function K(gy.qsd) =
01200383(q1.¢2.1). The coordinate origin is at the common point of the threo
intersection lines between the pairs of the potential energy function.
Viy= V3, =001 ¢V. The function assumes positive values along the inter-
section between the surfaces | and 3. In the perpendicular direction, the
function reaches negative values with two minima. The contour line spacing
is0.05¢eVps-'.

Vi ViaVay <

ffx(fh-f?z..s‘) [ 72- ﬁx(@u@g.&’) = T sx((h.q;..?)
2nV,* VyaVay
B =8 - R S @)

Using approximations (27) and (A8), we obtain for the
matrix elements
= 2aV,,*
21(0) 8 ==t
T WamioT
(A +4G,y)*

kT ]‘an(o) (282)

o] -

= 217"532
Q (()) 5 e
T WWamgk,T

(A2+AG|3"’AG|2)2
4AskoT

Xcup[-— ]“an(o)

(28b)

The relative contribution of the superexchange mechanism
in the charge separation process can be quantitatively char-
acterized using the functions F, (1) and F,(t). For simple
comparison, we can use the following expression for the
branching raiio at tue steady state

- 240
2:.(0) +20,,(0)

(29)
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Table 1
The time constants and free energies of primary electron transfer in the
photosynthetic reaction centre of Rhodobacter sphaeraides [5]

Strain 7(295K) (80 K) AT\

(ps) (ps) (eV)
Wild type 35403 17402 -0.15+0.01
(M) Y210F 105+1.0 105+1.0 -0.11£0.01
(M)Y2101 1612 55+5 -0.1240.01
(M)Y2i0W 4114 155+10 -0.09+0.01

Recently, Nagarajan et al. [5] have investigated the pho-
toinduced electron transfer in the photosynthetic reaction cen-
tre of Rhodobacter sphaeroides in mutant strains in which
tyrosine (M)210 is replaced by phenylalanine, isoleucine or
tryptophan. Their results concerning the mean electron trans-
fer time constants at room temperature (7(295 K) ) and at 80
K (7(80 K)), and the free encrgies (AG3(295 K)) of elec-
tron transfer from excited bacteriochlorophyll dimer (P*) o
bacteriophecophytin (H,,) are given in Table 1.

Nagarajan et al. [5] analysed their experimental results
assuming scquential clectron transfer using the potential
energy surfaces in two strongly correlated reaction coordi-
nates. They conclude that the temperature dependence of the
electron transfer reaction in the mutants cannot be explained
adequately on the assumption that the mutations only alter
the overall A G, “alues, but it can be accounted for by assum-
ing that they alsc increase the free energy of the additional
state (P*B. ") that serves as both a kinetic and a virtual
intermediate. The evaluaied increases in the free energy of
(P*BL.") were found to be greater than the measured
changes in the frec energy of (P*H_ 7).

The reorganization energies for separate electron transfer
steps are important parameters for the modelling of the elec-
tron transfer raics in the triad system. Estimates of the reor-
ganization energies for the photosynthetic reaction centre
vary over one order of magnitude from 200 to 2000 ¢cm ™!
[1-3,5,9]. In the kinetic analysis, very different correlation
coefficients of the reaction coordinates were assumed. In the
present model, we employ parameters obtained by Marchi et
al. [3] using molecular dynamics calculations for the pho-
tosynthetic reaction centre of Rhodopseudomonas viridis.
The estimates (Eq. (29)) of the contribution of superex-
change to the charge separation in the triad system for differ-
ent values of the electron transfer free energies AG,, and
AG,,areshownin Fig. 3. The upper part of Fig. 3 corresponds
to the normal Marcus regime for (P*) to (P*B,_ ™) electron
transfer. Since the populations of the intermediate state are
below the detection limits, the rate cocfficient for electron
transter from (P* B, ") to (P*H, ) should be larger than
that from (P*) to (P*B, 7). This limits the possiblc range
of the free energies. The frce energies pertinent to photosyn-
thetic reaction centres are shown in the middle. The contri-
bution of the superexchange mechanism to the charge
separation in this range of free energies is between 5% and
15%.

AG,, /[eV]

0.4 -0.3 0.2 0.1 0.0 01 0.2
4Gy /eV)

Fig. 3. The contour map for the function B(AG,,4 G;) (AB=0.05) char-
acterizing the relative contributions of the superexchange mechanism to the
decay of the initial state. Porameters as in Fig. 1, V= V2 0.01 ¢V, The
saddle point is at the free energies corresponding to two barrierless electron
transfer processes.

5. Conclusions

The theory of non-adiabatic clectron transfer reactions
based on the stochastic Liouville equation has been extended
to triad systems, e.g. D-A-A. Distinctive features of the pres-
ent formulation are the use of the potential energy functions
for the three electronic states employing two mutually cor-
related solvent polarization coordinates. They describe the
influence of the solvent on the energy levels of the electronic
states participating in the electron transfer processes. The
characteristics of the dynamic processes are determined by
potential barriers as well as the friction at the molecular level.

The dynamic response of the solvent is described using the
auto-correlation functions for each solvent polarization coor-
dinate. The solvent relaxation time spectrum can be properly
included in the model. The time evolution of the supramo-
lecular system has been described using gaussian wavepack-
cts propagating on the three potential energy surfaces. In a
certain region of the solvent polarization coordinate space,
the three statss are degencrate. At this stage of solvent polar-
ization fluctuations, resonance electron transfer occurs. The
interplay between the sequential and superexchange proc-
esses has been investigated for different free energies of the
electron transfer reaction.
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Appendix A

The dependence of the effective coupling functions
R,(41,q2,5) on the reaction coordinates ¢i, g2 is due to the
reaction coordinate dependence of the three vertical energy
differences: U2=q,— A - AGu, Up=—q+ Aj—A 3+
AG|2- AG|3 and U|3 =92~ As— AG];. In order to write
the polynomials in possibly compact notation, we introduce
the following notation abbreviations: s;;=s+1I,,
Siy=s+ ng. Spy=s+ 1'23. U= V,k/ﬁ, Uy = Uu‘/ﬁ and
ldu' = (s+ [',,‘)2 + U;ﬁ/ﬁz o= S[kz + “’kz. The effective cou-
pling functions K(¢,,925) can be given in terms of the
functions connected with the direct population transfer
P,(91.925) and the superexchange 8,(41.¢2.5). For the partic-
ular case vy =0, we have

R\ (91.928) = 0122 P (41,42.8) = 01202352(41.42.8) (Ala)
k"z(q..q;.s) mv.;vzﬁz(q..q;..s*) (Alb)
Ky (quqas) = v3*Pr(@1qas) = 01a02382(g1ga8)  (Alc)

Let us denote the determinant of the set of equations for
the off-diagonal matrix clements of the density matrix by
D(s). For v;3:=0, it is given by

D($) = |dya|*1dis}* |das )+ 2002% | dia | (512823 = Uasttas)
+ 201270252 (S12823 + Upgiag) + 2023% |y |
(S12813 = thgthya) +012* | iz |2+ vy | dy P (A2)
The functions P, (4,,2.5) and Py(g,.g5.5) are as follows
P1(9iq28) = 2[812]dixa|* | daa |* + 2503002751382 = 13ty
+02? |day | 3503+ 0127023 823+ 0125121/ D(S)

(A3)

Py(910209) = 2083 |dia 13 dis |2 + 2520020 (S12803 = thathyy)
+ 0 [ dia 3513+ 0127003 80 + 03y "5 ) /D)
(A4)
The function $,(1,¢2.5) is given by
$2(g1:g2:8) =2{v1303 [ 51281352
= Sa3iizly3 = S13M1alay = S1aly 32 )
+ 01’0201 + Uy 01250} D(s) (AS)

Along the intersection uy,=0, the following equalities
hold: Uy = = Uy and Q@=q+ C, where C= ~ Ay - AG;].
The function $,(g,.q, + C.s) is given by

$(quqr + €8) = 250,000 1dia |3 + 0102 + 0271 /D(5) (A6)
where

D(s) = |dy3]*{ |dia]*+ |dia] 2[2(0122 + 0237)
+ (02 = 09") 2 2] +40,,70,3%) (A7)

In deriving Eqs. (A6) and (A7), we have assumed that
INy=I=I=I.

Using the approximation 2s/ (#%s* + U,3%) =278(U,3) [k
for Eq. (A6), we obtain an estimate for the superexchange
coupling between states 1 and 3

K3(1:925) = 0120235,(91,92,8) = 2hS(U,5)

(012023)* [ |dia| > +012° + 053]
[dya ]+ |di2|2[2(032° + 0337) + (0127 = 023) 1 T?] + 401270537

(A8)

The approximation 2s/ (%% + U,5%) =278(U,,) /h was
originally introduced by Zusman [37] in his theory of the
electron transfer processes in a two-level system. Approxi-
mations (A6)-(A8) neglect the negative contributions to the
effective coupling function shown in Fig, 2. A similar approx-
imation has been proposed recently by Tang and Norris [9]
for the effective coupling function for the superexchange.
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