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Abstract 

The kinetics of charge separation due to the outer-sphere electron transfer processes in triad systems D-A-A in a polar environment were 
investigated using the stochastic Liouville equations. The solvation phenomena of the triad system in the different electronic states were 
described using Green's functions in two mutually correlated reaction coordinates and their auto- and ere ss-correlation functions. The coupling 
between the sequential and suporexchange processes in the triad system was investigated. 
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1. Introduction 

In recent years, much effort has been made to model the 
electron transfer processes in triad systems related to photo- 
synthetic reaction centres [1-10]. In the photosynthetic 
reaction centre of Rhodopseudomonas viridis, the bacterio- 
chlorophyll special pair donor (P) is initially excited. An 
electron is transferred from P* to a distant bacteriopheophytin 
(HL). These two subunits are bridged by ba'cteriochlorophyU 
monomer (BL), which can function ~ a real electron accepter 
or can contribute to effective electronic coupling between the 
special pair dimer (P*) and bacteriopheophytin (HL). The 
importance of the relative contributions of the sequential, 
two-step charge separation and the direct process due to 
suporexchange has been the subject of many theoretical con- 
siderations and experimental research [ 1-4,8]. 

Hu and Mukamel [6,7] developed a unified theory of 
electron transfer in the triad system using the density matrix 
method. The approach exploits an analogy between the elec- 
tron transfer processes in multicentre donor-accepter systems 
and non-linear optical processes and the underlying dynamics 
contributing to the optical lineshapes [ 11-,7 ]. In particular, 
the electron transfer processes in the triad system are analo- 
gous to optical pump-probe experiments. They solved the 
Liouville equation for the density matrix using the perturba- 
tional expansion in the powers of the coupling constants Vv, 
and the Liouville space Green's functions to describe the 
system dynamics. The dynamics are described in terms of the 
coordinate auto-correlation functions and corresponding 
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cross-correlation functions. They did not invoke directly two- 
dimensional potential energy surfaces for the triad system. In 
this paper, we show that using the concept of a two-dimen- 
sional energy surface, we can recover the formal results of 
the Hu and Mukamel theory [6,7] in a form convenient for 
analysis of the couplings between different processes. The 
role of the correlation between two solvent polarization coor- 
dinates can be evaluated easily in the present approach. 

An important question for the evaluation of the electron 
transfer rates is the correlation between the fluctuations in the 
two energy gaps between the three electronic states. The 
energy gaps are an obvious choice for the reaction coordinates 
[ 3,6,10,18,19]. Their fluctuations are due to intramolecular 
nuclear motions and outer-sphere solvent nuclear motions. 
The changes in the energy level separations due to sol~,ent 
fluctuations can be accounted for by the difference between 
the electrostatic interactions of the solvent molecules with 
the donor and accepter subunits of the supramolecular system 
[ 1,3,18]. The correlation of the solvent polarization coordi- 
nates is a simple consequence of the fact that each polar 
molecule contributes simultaneously to all electrostatic 
energy differences in the triad system. Recently, using the 
variational method, the potential energy functions in the two 
solvent polarization coordinates have been derived within the 
framework of the dielectric continuum appr~i,~ation 
[ 10,18,19 ]. The correlation between the two solvent polari- 
zation coordinates can be simply related to the geometrical 
arrangement of the subunits forming the triad system. "me 
coordinate correlation coefficient can also be given in terms 



52 J. Najbar. M. Tachiya / Journal of Photochemistry a.d Photobiology A: Chemistry 95 (1996) 51-59 

of the three reorganization energies characterizing the three 
electron transfer processes in the triad system [ 19]. 

Tang et al. [20-23] have applied the stochastic Liouville 
equations to solve the problem of electron transfer between 
three electronic states using a single solvent polarization 
coordinate, extending the original Zusman theory of outer- 
sphere electron transfer in the two-level system. Recently, 
Tang and Norris [9] applied the Liouville equation approach 
to the triad system using two non-correlated solvent polari- 
zation coordinates. However, the potential energy functions 
applied in Ref. [9] are not consistent with linear response 
theory. The horizontal displacements of the potential energy 
surfaces and the hmnonic force constants arc considered as 
independent quantities. This results in the rotation of the 
directions of the surface intersections introducing additional 
couplings. More direct effects resulting from the dependence 
ofthe l, otential energy functions on the coordinate correlation 
arc missing in their approach. Within the framework of the 
linear response theory, the reorganization energies simulta- 
neously determine the shape of the potential energy surfaces 
and their horizontal displacements. The corresponding rela- 
tions were recently discussed in Refs. [24] and [25] for the 
single reaction coordinate and in Refs. [ 10], [ 18] and [ 19] 
for the triad system. It has been shown that there are three 
possibilities of selection of the two solvent polarization coor- 
dinates for the triad system. 

The two solvent polarization coordinates and their cone+ 
lation have been qualitatively considered in several papers 
[5,9,26]. The most precise information concerning the sol. 
vation thermodynamics as well as the solvation dynamics is 
obtained from molecular dynamics simulations. Extensive 
molecular dynamics simulations for the photosynthetic reac- 
tion centre of Rhodopseudomona$ viridis have been per- 
formed by Marchi and coworkers [ 3,4 ]. in Ref. [ 3 ], a special 
choice of solvatior, coordinates has been used (linear com- 
bination of the energy level differences) so that the two coot- 
dinates are orthogonal at t ~ 0. Their calculations have shown 
that the reaction coordinates are approximately orthogonal in 
all the time domain, The simulations by Marchi et al. [3] 
show a high degree of coordinate correlation. The correlation 
coefficients derived from the results obtained by Marchi et 
al, [3] are independent of the rescaling applied for the reor- 
ganization energies, 

The purpo,u: of this paper is to analyse the non-adiabatic 
electron transfer processes in the triad system using the poten- 
tiai energy functions in the two correlated solvent polarization 
coordinates, The dynamics of the system are described using 
the stochastic Liouville equation. The solvation dynamics are 
described in terms of Green's functions which depend on the 
auto. and cross-correlation functions of the solvent polari- 
~tion coordinates. 

2. Soivation d3~mmics in the two.4iimeusional case 

The influence of solvent polarization on the electron trans- 
fer Wocesses in the triad system can be described in terms of 

two reaction coordinates. Each coordinate is related to the 
electrostatic energy difference for the interaction between the 
polar solvent molecules and the two subunits involved in the 
electron transfer step under consideration. For the A-B--C 
triad, we select the central subunit B as the subunit common 
to the two solvent polarization coordinates. We should men- 
tion that m some applications the subunit A is taken as ref- 
erence for the two solvent polarization coordinates. 

The diabatic energy surface in the solvation coordinates 
for the initial neutral state is given by [ 18] 

l (q.~t2 _ 2/:g/,q2 q.~22~ 
Ut(qt'q:)= 2(I =p2)~,2Ai ~ + 2AJ (1) 

where p= At:/(AtA:)t/2 is the coordinate correlation coef- 
ficient, A~ and A: are the solvent reorganization energies for 
electron transfer along qt and q2 coordina:es and At2 is a 
measure of the coordinate correlation. The reorganization 
energies measure the standard deviations of the reaction 
coordinates. The standard deviations are given by 
At2'=(gq~(0)gqt(0)),,,, A.~2~=(&/.~(0)&h(0)),~ and 
A 12: ~ (gqº (0) &h(0) )~,, measures the equilibrium correla- 
tion of the reaction coordinates. The following relations hold: 
A t' = 2AtkaT, A.~ -~ ~ 2A.&aT and A 122 = 2AtaknT. 

Within the framework of the linear response theory, the 
potential energy surfaces for the charge transfer (CT) states 
D+-At - -A:  and D+-At-A, + are given by [ 18,24,25] 

U,.(ql,q,.) ~= U=(qt,qa) -qt  + At + AGt2 (2) 

and 

U3( q,,q~) ~ Ul ( qt,q2) - ql + q2 + As + A GI3 (3) 

respectively. The combined reorganization energy for the I 
to 3 transition is given by A3 = At + A2 - 2A,2. The minimum 
ofthe surface U2(qt,q~.) is located atq, (2~ = 2,~t, q.J') = 2,~t2; 
the minimum ofthe surface U~(q~,q2) is at ql ('~) ~ 2At - 2An, 
q2 {'~)~ -2A,..+2AI~. The contour maps of the potential 
energy surfaces i-3 are shown in Fig. 1. 

The distribution function of the solvent polarization coor- 
dinates at equilibrium is given by 

! 

[ 1 (ql_~. a ,, q,q2 q~_~.2~] 
×exp 2(1_p2) ~At2 -zPA- '~2  + &22] j (4) 

where p=  A ,221 [,~ ,A2]. 
The solvation dynamics can be described in terms of 

Green's function ~( q,,q2,t I qt ". ?2 °) representing the condi- 
tional probability that the solvation coordinates have expec- 
tation values qt,q2 at time t given that they had the values 
q OqO at time 0 if the system is in the single electronic state. 
The derivation of the equation for Green's function using 
cumulant expansion to the second order is presented else- 
where [ 27]. The dynamic correlations are described using 
the following matrix 
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Fig, I. Potential energy contour maps ( A Ua- 0.2 eV ) for the lowest el mrgy 
surfaces. AGt2'--0.075 eV, AG,3- -015  eV, A,-0.1,132 eV, 
A2 ~ 0.1272 eV, ~:~ ~ 0.1567 eV. The reorganization energies were derived 
from the molecular dynamics simulations for the photosynthetic reaction 
centre by Marchi et al. [3]. 

Sit) = 

AI2 At22 Ai2Ml(t) A 122Mi2(t) ] 
AI22 A22 A 122M12(/) A 22M2(/) /  
AI2Ml(t) A 122Mi2(t) AI2 Ai2 
A I:~2MI2(I) A22M2(t) At22 A22 J 

(5) 

The matrix S (t) is a symmetric matrix of the auto-correlation 
and cross-correlation functions and the corresponding 
standard deviations. The auto-correlation functions are 
defined as Ml(t )"~(6ql ( t )Sqt (O))aJAI  2, Mz(t) = 
(&/2(t) &/2(0) )~/A22. The cross.correlation function is nor- 
malized as follows Ml2(t ) --'-- (~t/i (t) 8q2(0) )av/A 122. 

Green's function ¢k(qt,q2,t[ q't,q'2) for the neutral state of 
the triad systm, has the following form 

I 
4Kxl,x2,tlx3,x4) = 2 ~  

[ "  ]/ Xexp -- ~ EXtStk-I(t)Xk ~beq(x3,x4) 
I.k 

(6) 

The matrix elements of the inverse matrix S-  t(t) are calcu- 
lated using the standard procedure 

Sty-I(t) = ( - 1 )t+l' I sT(t)lkl/IS(t)l  (7) 

where IsT(t)#,I is the determinant of the minor sT(t)tk 
obtained from the transposed S(t) matrix by removing the 
/th row and kth column. The determinant IS(t) I of the matrix 
S(t) is equal to 

IS(t) I -- A 124A234{ [ 1 -Mt2( t )  ] 

X [ 1 -M22(t) ] "!-04[ 1 --Ml22(t) ]2 

-- 2p2[ [ 1 +M! (t)M2(t) ] [ 1 +Mi22(t) ] 

- 2 g l 2 ( t )  [ g l  (t) + M2) ] ] } (8) 

At long times, Green's function reaches the equilibrium 
distribution in a particular state dp(qt,q2,tlqt°,q2 °) 
q~m(qi,q2). 

Both the experimental data and theoretical predictions, e.g. 
the results of molecular dynamics simulations, show that the 
auto-correlation functions Ms(t) are non-exponential func- 
tions of time [3,4,14,28-31 ]. At very short times, the inertial 
effects determine the time dependence of the auto-correlation 
function. In the general case, the dynamics of the system can 
be characterized using suitably chosen auto- and cross-cor- 
relation fimctions of system variables. These functions can 
be calculated using, for example, the methods of molecular 
dynamics. The simulations performed by Marchi et ai. [3] 
for the triad system composed of the special pair, bacterioch- 
Iorophyll and baeteriopheophytin in the bacterial photosyn- 
thetic reaction centre of Rhodopseudomonas oiridis showed 
that the fluctuations in the two energy gaps are correlated. 

Within the framework of the linear response theory, 
Green's functions for different electronic states are given by 
[18,24] 

~bm( qt,q2,t l ql°,q2 °) 

= 4'(ql--ql<"~,q2--q2<'>,tlql°--qlt'~,q2°--q2 <'~) (9) 

where q~ c,,,), q2<,.~ specify the position of the minimum of the 
surface m. The Green's functions given by Eqs. (6) and (9) 
describe tt,e dynamics on each surface in the absence of 
electron transfer processes. They are considered as the solu- 
tions of the equations of the following general type [ 32,33 ] 

• D dp.,( qt,q2,t) -- I,.., ( qt,q2,t) ° 4o.1 ql,qu,t) (I0) 

for the initial distribution O.,(qt ,q2,0)=8(q~-ql °) 
8(q2-q2"). The form of the integro-differential operator 
F.,.,D. is considered to be quite general. In the Laplace 
domain we have 

S~b.,( ql,q2,s l ql°,q2 °) -- ~b( ql,q2,0 ) 

= L[ Fm.,D(ql ,q2,t). d~.,(ql ,q2,tlql°,q2 °) ] (11) 

where L[... ] denotes tile Laplace transformation. 
The Laplace transforms of Green's functions can also be 

given by [ 32-35 ] 

$.(q,,q2,sl I i°,q2 °) = 
~.m(qj,q2) 

s 

+ 4~,,~q(O,O) ~.(ql,q2,slqi°,qf) (12a) 
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~n(qt,q~lqt° q~) 

1 i [  ck.(qt.q2,tjqO,qO) _ ~ eq(qt,q2) ] 
4,~(o,o) 

O 

x e x p ( - s t )  dt (12b) 

where ~(qt,qa~J q O,qO) represents the solvent relaxation 
time scale functions. In Green's function (12a). the first term 
describes the equilibrium contribution, whereas the second is 
due to the finite rate of the solvation dynamics in the given 
electronic state. 

3. Stochastic Uouvllle equations for the triad system 

The stochastic Liouville equation for the density matrix of 
the three.level system (which includes the solvation dynam- 
ics in the supramolecular three-component system in a polar 
solvent) has the following form [6,9] 

0 i 
p(qt .q2. t )  m - ~ [H(qt,q~,t),p(qt,q~,t) ] 

0 
+ ~t p(qt,q~,t)I.~, (13) 

where the system hamiltonian is given by 

[ 'U,(q,.q~) Vn V,~ ] 
H(q,,q~,t)- Vn U~(q,,q:) V~ | 

.V .  V~ Us( q,,q~) J 
(14) 

Here Vm are the electronic coupling matrix elements between 
the diabatic potential energy surfaces U,,,(q,,q2) and 
U,,(qt,q2). We use the following notation U.~ 
U.(qt,q:)-U.(qt,q=) for the vertical energy differences. 
The following relation holds: Un + U ~ -  U., 

The rel~ation term in BCl, (13) accounts for the solve|ion 
dynamics on three surfaces (diagonal terms) and phenome- 
nolosicMly the dephasing for the off-diagonal elements of 
the density matrix (as in optical Bioch equations) [6] 

0 "r, D.m, - / ' , ~  - r,~,~'l 
~p(¢,,q~a)l,~--r2,~, r ~ . ~ - r ~ _ ~ |  (1~ 

-F~,m, - F ~  F ~ . ~  J 
The form of the hm~iltonian and the relaxation term imply 
the. in the present formulation, w¢ can model both the static 
limit of the solvent fluctuations considered by Hu and Muka. 
reel [6,7] arid to some extent the dephasing of electronic 
cohenmce. We assume that F,,,,, ~ F.,,. The relaxation of the 
diagonal elements of the density matrix (populations), i.e. 
the solvation dynamics, is described by Eqs. (6) and (9). 
The ~ x  elements of the density in the frequency domain 
satisfy the following equations 

i 
s~m.-p,.,,(O) = - ~ [H,jS]m,, 

+ L[ap,,,,,lSt[,~|], m,n= 1, 2, 3 (~6) 

In an explicit form the Liouville equation represents nine 
equations for the Laplace transforms of the elements of the 
density matrix. 

Using the solutions for the off-diagonal matrix elements, 
the kinetic equations for the populations of the three levels 
in the Laplace domain can be written in terms of the three 
rate functions [ 34-36] 

sp| l(  ql.q2.s ) - pt t( O) 

- - F|(qt.q2.s) - F':(qt.q2.s) + l ' | |Df i | t (q t .q : .s)  (17a) 

s~:2( q|.q2.s) ~ + # | (  ql.q2.s) -/ '~s(q|.q~.s) 

, F:2D~2( q|.q2.s) (17b) 

sp3~( qt,q2,s) ~ + ~2( qq,q2,s) + /?3( qt,q:~.s) 

+ U.~3Dp~(q|.q2,s) (17C) 

The rate functions have been defined as follows 

#, (qt.q2,s) "g |  (q|,q2,s) [~,| (¢|,q2,s) - A~(q, .q2,s) ] (18a) 

P2(qt,q~.s) = g2(q|,q2,s) [~, | (q|,q:,s) - ~.~(q|,q2,s) ] (18b) 

Ps(q|,¢=a) "~(¢|,¢2,$) l•=(q|,q=,s) - As(q,,q2,s) ] (18c) 

where the functions Rl(ql,q2,s) play the role of the effective 
coupling between the donor and accepter sites. Detailed equa- 
tions for the coupling functions will be given elsewhere (see 
also Appendix A). Below, we consider specific examples and 
approximations for ~a(q,,q2,s). In the general case, the effec- 
tive coupling function contains contributions due to the direct 
coupling of the two states and due to superexchange. The 
fv-~.tions Rl(qt ,q2,s)  have large values along the intersec- 
tions of the potenti~d energy functions. 

The solutions of the kinetic equations for the populations 
of the levels in the Laplace domain in terms of the gaussian 
wavepackets are as follows [ 32,36] 

~,,(qt,q2,s) = f f ptt(q,O,q°,O)~t(qt,q2,slqtO.q2O)dqt°dq~ 

¢ ¢  
JJ,~|(qt°.q°.s)~,( qt.q2.s I q|°)dqt°dq2 ° 

(19a) 

- / f P2( q|°.q,O.s ) C~, ( q|.q2.s l q,°.q°)dq,°dq2 ° 

#, ( qt°,q°,s ) ~ ( qt,q2,s [ qtO,q2 °)dqt°dq2 ° 
b 

#3( qt°,q°,s ) ~ (  qt,q2,s l qt°,q °)dqt°dq2 ° 

(19b) 
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= + ffF2(q|°,q2°,s)~3(qhq2,slql°,qzU)dql°dq2 ° 
P33(q,,q2,s) + f f  p3(ql°'qa°'s)~3(q''qa'slql°'q~)dq'°dq2° 

(19C) 

The first term in Eq. (19a) depends on the initial distribution 
of the population on surface I. For photoinduced electron 
transfer processes this distribution is established by the pho- 
toexcitation mode. Transient hole burning experiments show 
that this distribution can be controlled by the properties of 
the laser pulses. Here, for simplicity, we assume that the initial 
distribution on surface 1 is the equilibrium gaussian distri- 
bution. For the initial equilibrium distribution 

o o Pll(ql ,q2 ,0) = ~bleq(ql°,q2°), we have ~lt tilt 
.I J , ,~ , (q |~ '  q ' 0)  ~ | ' {' 0+ ~' (ql,q2,slqm ,q2 )dql dq2 

01~a( ql,q'.) I s (20) 

We note that ~m(qt,q2) also represents the long time limit 
of the gaussian function ~ (q~,q2,tlq(~,q2°). 

The total populations of the three levels in the Laplace 
domain can be obtained by integrating the populations 
P,..,(ql,q2) over the solvent polarization coordinates 

~.,,,,( s ) = f f ~m.,( q,,q2)dq,dq2 (21) 

Using Eqs. (19) and (21), these populations can be 
expressed as 

/~,,(s) = 1 [ l _ : , ( s ) _ / ? 2 ( s ) ]  (22a) 
8 

~22($) __~_ I t:i(8)_:3(8) ] (22b) 
$ 

I 
p33(s) = - [:2(s) + sfi3(s) ] (22c) 

$ 

where 

:re(s)- f f :m< q,,q2,s)dq,dq2 (23) 

represents the total rate functions for the transitions in the 
three-level system. Using Eqs. (18) defining the rate func- 
tions, the formal solutions for the populations of the states 
(Eqs. (19)) and integrating over the coordinate space, we 
obtain the integral equations for the total rate functions 

= -1101,o)  
S 

-- s~2($) QII ($) + F3($)Q12($)  } 

- f f F,(q,°,q°,s)[f',,(q,°,q2°,s) 

+ i?~2(q~°,q°,s) ldq~°dq2 ° 

- ff:2cq,°,+°,,)f, ,(q,°,q°,,)dq,°dq? 
+ 

$ 

+ Q23($) ] - F3(8)023($)  } 

- f f [  :'(q'°'q°'s)T2t(q'°'q2°,s)dqi°dq2° 

- f fP.(q,°,q°,s)[T2,(q,°,qz°.s) 

+ T23(ql°,q2O, s) ] dql°dq2 ° 
d Q ~  

]dq,°dq2 ° (24b) 
Jl 

I {FI($)Q.32(8)-F2(8)Q.33(s) F 3 C s )  - s 

-- F3(S)[  Q32(s) + Q33($) ] } 

+ f f Pt ( q?,q2°,s) f ~:( q,O,q2',s)dq,°dq2 ° 

- f f#2(qt°,q2°,s) F33( ,O,q2°,s)dql°dq2° 

+ f f ~3( q,°,q2°,s) [ T32( qt°,q2°,s) 
- 0 0 + T33 (ql ,q2 ,s) ] dql°dq2 ° (24c) 

where 

O.m.( S) - f f R.,( q,.q2,s)ck.m( q,,q2)dq,dq2 (25a) 

and 

Tm.(q,°,q2°,s) 
- cb:q( o,o ) f f Rm( q,,q2,s ) ~.( q,,q2,s l q,°,qf )dq,dq: 

(25b) 

The integral terms represent the double overlap of the solvent 
time scale functions 9. (ql ,qz,slq~°,q °)  and the twn functions 
Rm(ql,qz,s) and Pt(ql°,q°,s). The three integrals fff/ 
Pa(q~°,q2°,s)[rrm(q~, q2slq~ °, q2 °) + rrn(ql, qz,slq~°q2°) ] 
gt(q~,qz,s) dq~°dqldq2 give the measure of the adiabaticity 
of the electron transfer at the intersection of the surfaces m 
and n. The six integrals f~l~t(ql°,q2°,1 ) rrmq~,q2,slq~°,q2 °) 
I~k (ql,q2,s)dq i°,dq2°dqtdqz describe the dynamic coupling of 
the electron transfer processes occurring along different inter- 
sections, I and k, due to the finite rate of wavepacket propa- 
gation on the surface m. 

Since the functions Rm(qt,q2,s) are defined by explicit 
expressions, finding a solution to Eqs. (24) is equivalent to 
finding a self-consistent population difference between the 
reactant and product states. An iterative approach to the solu- 
tion of the integral equations can be used. Moreover, F~qs. 
(24) can also be used as a convenient starting point for 
various approximation schemes. 

The kinetic description of the electron transfer processes 
in the three-level system deve!:3ped h¢+~ san ~ applied to a 
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variety of physical systems. In particular, the non-adiabatic 
limit of the electron transfer processes in the triad system 
holds when all solvent time scale functions are vanishing 
~r,,(q,q=,s[qt°,q ° )  --- O. In this limiting case, all integral terms 
containing the functions ~,,,,(qa°,q2°.s) vanish, and we obtain 
a set of algebraic equations for the Laplace transforms of the 
rate functions ~,,(s). Namely. Eqs. (24) simplify as follows 

{ro,,(.,)+o,=(.,) ] /0,,(..,) o=,(.,) 
L -  O,=(s) + Q33($) 

Ii o i]t +s I - (s)j 
o LQ=' 

(26) 

The solution of the coupled equation (Eq. (26)) can be 
obtained using standard algebraic methods, e.g. by construct. 
ing the inverse matrix to the matrix on the left-hated side of 
Eq. (26). Eq. (26) repre~o~nts an important res,|! of the 
present formulation of the outer-sphere electron transfer in 
the triad system. The superexchange mechanism of electron 
transfer and resonance tunnelling effects in the non-adiabatic 
limit can be modelled using these equations. 

0.2 

0 1  

' ~ ~  

t ) 

0 

o , -0. I  

/ 

/ • 

0,0 01 0 2  

q~ 

Fig. 2. Contour map fo r  the effective coupling function [¢(q~,q~,l') 
vt=u=.~S=(qt,qa.r), The coordinate oflgin is at the common point of the three 
intersection lines between the pairs of the potential energy function. 
V,2 ~ II~, ,~ 0.01 eV. The function a.~umes positive values along the inter° 
section between the surfaces I and 3. in the perpendicular direction, the 
function t~aches negative values with two minima. The contour line spacing 
ts 0.05 eV ps ° ~, 

4. Modelling of the photosynthetic reaction centre 
W 2 ja.k P.~.(q,,q,.,s) Vt=V~.~ 

For the photosynthetic reaction centre, the distance 
between the donor D and the second accepter A.~ is large. The 
corresponding electronic coupling matrix element is expected 
to be very small Vt~ ~0  [2,5,7,8]. The functions l~l(qt,q~.,s) 
for this particular situation are given in Appendix A. We can 
distinguish two situations. 

( i ) When Va-  0, the dominant contribution to the effec. 
tire coupling between the states I and k is due to coupling of 
tbe initial and final stales through the intermediate state s ~ l, 
s~k ,  In the case of the superexchange mechanism, 
~x(q,,q=,$) shows a strong dependence on both reaction 
coordinates, The function reaches a maximum at the point 
common to the three intersection lines, Moreover, along the 
direction of the two other intersection lines it attains negative 
values, The contour plots of R=(ql,q=,s) are shown in Fig. 2 
for the dephasing Fa = 50 fs = t. This value is used for visu- 
alization pmlx~S only. With increasing dephasing rate, the 
effective coupling function ~'=(qt,q=,s) = Vt=V2~g:(qt,qa,s) I 
/i a d~ec~ .s  and spreads over a large area in the coordinate 
space, In Appendix A. a Zusman-type approximation [37] 
for the effective coupling function ,~(qt,q2,s) is given, The 
m ~ x  elements ~=t(0) and ~,~(0) can be evaluated by 
numerical n~thods using FXlS, (25) and (AS), 

(2) When V**,~,O, the dominant contribution is due to 
direct coupling between the states ! and k. The corresponding 
rate functions Rx( ql,q2,s ) can be given in the tbllowing form 
I~ng aPl~ximations proposed by Zusman [ 371 

" T -  a( u~) t~2 Sx(q,,q2,s) (27) 

Using approximations (27) and (A8), we obtain for the 
matrix elementa 

21rV~ ~ 

×exp[- (At +AG,~)= 1 j-0=,(o) (28a) 

2frV232 

XexpI- (A2+AG's-AGI2)2] j-0,,(o) 
(28b) 

The relative contribution of the superexchange mechanism 
in the charge separation process can be quantitatively char- 
acterized using the functions F,(t) and F2(t). For simple 
comparison, we can use the following expression for the 
branching ratio at the steady state 

B= Q2,(0) 
Q, , (O)  + 2Q2t ( 0  ~ (29 )  
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Table I 
The time constants and free energies of primary electron transfer in the 
photosynthetic reaction centre of Rhodobacter sphaeroides [ 5 ] 

Strain r(295 K) 'r(80 K) ATt3 
(ps) (ps) (eV) 

0,2, 

Wild type 3.5 +0.3 !.7 +0.2 -0.15 +0.01 
(M)Y210F 10.5 5:!.0 10.5 + !.0 -0.11 +0.01 
(M)Y2101 16 5:2 55:1:5 -0.12 5:0.01 
(M)Y2|0W 41 5:4 155 5= 10 - 0.09 5:0.01 

Recently, Nagarajan et al. [ 5] have investigated the pho- 
toinduced electron transfer in the photosynthetic reaction cen- 
tre of Rhodobacter sphaeroides in mutant strains in which 
tyrosine (M)210 is replaced by phenylalanine, isoleucine or 
tryptophan. Their results concerning the mean electron trans- 
fer time constants at room temperature ( ~'( 295 K) ) and at 80 
K (~'(80 K)) ,  and tile free energies (A G1~(295 K)) of elec- 
tron transfer from excited baeterioehlorophyil dimer (P*) to 
bacteriopheophytin (HL) are given in Table I. 

Nagarajan et al. [5] analysed their experimental results 
assuming sequential electron transfer using the potential 
energy surfaces in two strongly ton'elated reaction coordi- 
nates. They conclude that the temperature dependence of the 
electron transfer reaction in the mutants cannot be explained 
adequately on the assumption that the mutations only alter 
the overall A G~ 3 ;'alues, but it can be accounted for by assum- 
ing that they also increase the free energy of the additional 
state (P+Bt . - )  that serves as both a kinetic and a virtual 
intermediate. The evaluated increases in the free energy of 
(P+Bt.- )  were found to be greater than the measured 
changes in the free energy of (P + HI.- ). 

The reorganization energies for separate electron transfer 
steps are important parameters for the modelling of the elec- 
tron transfer rates in the triad system. Estimates of the reor- 
ganization energies for the photosynthetic reaction centre 
vary over one order of magnitude from 200 to 2000 cm ~ t 
[ 1-3,5,9 ]. In the kinetic analysis, very different correlation 
coefficients of the reaction coordinates were assumed. In the 
present model, we employ parameters obtained by Marchi et 
al. [3] using molecular dynamics calculations for the pho- 
tosynthetic reaction centre of Rhodopseudomonas viridis. 
The estimates (Eq. (29)) of the contribution of superex- 
change to the charge separation in the triad system for differ- 
ent values of the electron transfer free energies AGes and 
A Gt 2 are shown in Fig. 3. The upper part of Fig. 3 corresponds 
to the normal Marcus regime for (P*) to (P + B, - ) electron 
transfer. Since the populations of the intermediate state are 
below the detection limits, the rate coefficient for electron 
transfer from (P~ Bt.-) to (P+Ht . - )  should be larger than 
that from (P*) to (P+B~-) .  "rhis limits the possible range 
of the free energies. The free energies pertinent to photosyn- 
thetic reaction centres are shown in the middle. The contri- 
bution of the superexchange mechanism to the charge 
separation in this range of free energies is between 5% and 
15%. 

¢,t  

0.0' 

-0,2 

-0,4 

°0,4 °0,3 -0,2 -0,1 0,0 0,1 0,2 

AG~3/[eV] 

Fig. 3. The contour map tor the function B(AGa,~G~) (AB,~0.05) char- 
acterizing the relative contributions of the superexchange mechtmism to the 
decay of the Initial state. Pnrameters as in Pig. 1, Vj2~ V2.~0.01 eV. The 
saddle point is at the free energies corresponding to two barrierless electron 
transfer processes. 

5. Conclusions 

The theory of non-adiabatic electron transfer reactions 
based on the stochastic Liouville equation has been extended 
to triad systems, e.g. D-A-A. Distinctive features of the pres- 
ent tbrmulation are the use of the potential energy functions 
for the three electronic states employing two mutually cor- 
related solvent polarization coordinates. They describe the 
influence of the solvent on the energy levels of the electronic 
states participating in the eleclron transfer processes. The 
characteristics of the dynamic processes are detennined by 
potential barriers as well as the friction at the molecular level. 

The dynamic response of the solvent is described using the 
auto-correlation functions for each solvent polarization coor- 
dinate. The solvent relaxation time spectrum can be properly 
included in the model. The time evolution of the supramo- 
lecular system has been described using gaussian wavepack- 
ets propagating on the three potential energy surfaces. In a 
certain region of the solvent polarization coordinate space, 
the three stat~s are degenerate. At this stage of solvent polar- 
ization fluctuations, resonance electron transfer occurs. The 
interplay between the sequential and superexehange proc- 
esses has been investigated for different free energies of the 
electron transfer reaction. 
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Appendix A 

The dependence of the effective coupling functions 
~t(qt,q2,s) on the reaction coordinates qt, q2 is due to the 
reaction coordinate dependence of the three vertical energy 
differences: U t 2 : q , - A ~ - A G ~ 2 ,  ~J'23~-"-q2+A~ - A  3 + 
AGt2-  AGts and U~3 - qt - qz - A3 - A Gt3. In order to write 
the polynomials in possibly compact notation, we introduce 
the following notation abbreviations: s~2 = s +/'t2, 
$13mS.+,Fi3, $23m$+F23,  t~lt.,~Vit/~t, utt=U:t/h and 
Id~,l 2~ (s + F~,): + U~, 2/~2_ s~2 + u,,2. The effective cou- 
pling functions l~:(qt,q2,s) can be given in terms of the 
functions connected with the direct population transfer 
Ps(qt,q:,$) and the superexchange $t(q~,qe,s). For the partic- 
ular case vt s ~ 0, we have 

K~(q~,q:,s) ~vt~fi~(q,,q~,s) ~vt:v:,~,~:(q~,q~,s) (Ala) 
v,~v:sS: ( q~,q:,s ) ( A I b) 

l~.~( q~,q~,s) ~ v:~:~( q~,q~,s) ~ t,~:v~S:( q~,q:,s) (AIc) 

Let us denote the determinant of the set of equations for 
the off-diagonal matrix elements of the density matrix by 
D(s). For vts ~0, it is given by 

D(s) ~ I dnl:ld. l~ld:sl  ~ + 2vn~ Ida: I :(s~:s:.~- u~u,.~) 

+ 2~n2v:sZ(sns:s + u,zuzs) + 2v:~: Id:31: 

(sns,s-u,~un) +vn41d~:l:+v:~41d:~l: (A2) 

The functions Pt(qt,q:,s) and Ps(q~,q:,s) are as follows 

(A3) 

(A4) 

The function $2(qt,q:a) is given by 

S~( q,,q2,s) - 21 v,~v2.d s t : t : :3  

- $2_~ut2ut3 -- st~ut2u~ - st2ut3u23] 

+ vt:3v~st2 + v2.~3t, t2s~ }/D(I) (A5) 

Along the intersection ut~:O, the following equalities 
hold: u u ~ - u ~ =  and q=~qt+C,  where C= -A~-AG,~.  
The function $2(qt,qt + C.s) is given by 

,~(ql,q, + Cs) ~ 2sl~t,l:v:.~[ Id~l ~ + v~ ~ + ~:.C'] IO(s) (A6) 

where 

D(s) ~ id~3l~{ Idt~l" + Id,212[2( ua22 + v~ 2) 

+ (v~ ~ -  v23~)~lr 2] + 4 v ~ v ~  ~ } (A7) 

In deriving Eqs. (A6) and (A7), we have assumed that 
I"!2 ----- ['13 = F23 --- / " " 

Using the approximation 2s/(hZs 2 + Ui32) -- 2'rrg(Ui3) Hi 
for Eq. (A6), we obtain an estimate for the superexchange 
coupling between states 1 and 3 

K,2( ql,q2,s ) = v12023S2( ql,q2,s ) ~ 2 ' ; ~ (  UI2 ) 

(vnv:3): [ I d,212 + v,:: + u232 ] 
, , , ~  

2 q Idt21'*+ Idlzl [2(vl:" +v:.~ 2) + (vlz2-v232) 2/F2] +4vlz2v232 

(A8) 

The approximation ~:v/(h:s: + U~22) ~ 2w8(U~,) Hi was 
originally introduced by Zusman [37] in his theory of the 
electron transfer pro~e,~ses in a two-level system. Approxi- 
mations (A6)-(A8) neglect the negative contributions to the 
effective coupling fi, nction shown in Fig. 2. A similar approx- 
imation has been proposed recently by Tang and Norris [9] 
for the effective coupling function for the superexchange. 
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